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STABILITY FROM THE BIFURCAT ION FUNCTION

Jac k K. Hale

ABSTRACT

Th is paper contains an extension to Ck.vector fields

of the classical results of Liapunov on the stability

of an equilibrium point in the critical case of one zero

root. The transformation theory of Liapunov is not

appl icable to this case. We exploit fundamental relations

from b ifurcation theory .
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In a recen t paper , deOliveira and Hale 121 discussed the

relationship between the bifurcation function obtained by the

method of Liapunov-Schaidt and the flow on the center manifold

for periodic n-dimen sional systems for which the linear approxi-

mation has one characteristic multiplier equal to one and the

V ~V remaining ones inside the unit circle. The purpose of this

paper is to present a more elementary proof of this result and

also to give an application to stability for autonomous systems

in the critical case of one zero root. This allows one to

extend and simplify the classical results of Liapunov (4j to

the case of Ck~vector fields. The approach used by Ltapunov

cannot be extended to this case since he employs the theory of

transformations toapproximate the vector fields by simpler

vector fields.

Consider the n-dimensional vector equation

0 0
(I) i • Ax • F(t,x ,X), A

O B

where ~ E E, a Banach space , B is an (n-i) x (n-i) matrix

with eigenvalues with negative real parts , F(t,x,~) is con-

t inuous ,is ck , k > 1, in x , ,  F(t•1,x,i) • F(t,x,A),F(t,0,O) • 0,

V ~F(t,0,O)/~x • 0. Our objective is to determine the 1-periodic

solutions of (1) in a neighborhood of (x ,X) S (0,0) as well as

their stability properties.

The me~~od of Liapunov-Schmidt is an effective way of deter-

mining the number of l~periodic solutions of (1). Since A has
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0 as a simple eigenvalue and all other eigenvaiues with

negative real parts , this method yields a scalar function

G(a ,A) defined and for (a,~) in a neighborhood of

(0,0) E ~ x E such that Eq. (1) has a i-periodic solution

in a certain neighborhood of (x,A) (0,0) if and only if

G(a X) • 0. Also , there is a prescription for determining

the l.periodic solutions from the zeros of C. The method

of Liapunov -Schmid t can be considered as a reduction principle

- reducing the discussion of the existence of special solutions

of (1) (the 1-periodic solutions) to an alternative problem in

lower dimens ion n amel y , to f inding the zeros of the scalar

function G(a,A).

There is another reduction principle in dicferential equa-

tions which determines the behavior of all solutions of (1) in

a ne ighborhood of (x ,A) • 0. This is the center man ifold

theorem . If x • (y,z), y E ~~~ , z E J~’’ in Eq. (1) • this

theorem says there is a func ti on h ( t y , A ) € F” ’ , defined ,

con ti nuou s, in y.~ 
in R x U , where U is a neighbor-

hood of (y, A ) • (0 ,0) E ~ x E, such tha t h( t ,y , A) • h(t.1,y, A) 
V

and the set

def
MA • ((t,y,z) :y E ~~~~~, z E *~ , z • h(t ,y , ) ,  t € R,(y,)) E U)

is an invariant manifold for Eq. (1). Furthermore, this manifold

is exponentially asymptotically stable. The properties of
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the solutions of Eq. (1) in a neighborhood of (x ,A) • (0,0)

is completely determined by the flow induced on M A by the

scalar equa t ion 
-

(2) • f(t ,y,h(t ,y , A ),A)

where F • (f ,g), f E  I~, g E J ~
’1 . Any 1-periodic solut ion of

Eq. (1) near (x ,A ) (0,0) is given by x(t) • (y(t),z( t) ) ,

z ( t ) • h( t ,y(t),A), and y(t) a 1-periodic solution of (2),

and conversely. Furthermore , the stability properties of y(t)

determ ine the stability properties of x(t) in the sense that

they are the same except that x(t) always has an additional

(n-l)-dimensional stable manifold.

The princ iple result proved by deOliveira and Hale (2) is

Theorem I. Consider the scalar equation

(3) a • G(a ,A)

where G(a ,A ) is the bifurcation function obtained by the

method of Llapirnov-Schaitlt. The zeros of G(a ,X) are in one-

to-one correspondence with the 1-periodic solutions of Eq. (2)

in a neighborhood of (y,A ) • (0 ,0). Furthermore, the stability

propert ies of the equilibrium points of (3) are the same as the

stability properties of the 1-periodic solutions of (2).



I
1 .

Pr of: Let us indicate a proof which is different from and

simpler than the one in (2). We first prove it for the

scalar equation (2). For Eq. (2), one can also apply the

method of Liapunov - Schmidt to obtain a scalar bifurcation

~(a,A) in the following way. In a neighborhood of (y,a,A) — (0,0,0),

let y(t,a,A ) be the unique 1-periodic solution of the equation

r l
(4) y(t) • f(t,y(t),h(t,y(t),A )) - J f(s,y(s),h(s,y(s),A),A)ds0

w ith y • a and define
‘0

V 

— f l
(5) G(a,A) — J f(s,y(s,a ,A ),h(s,y(s,a,A),A)ds.

0

The 1-per iodic solutions of Eq. (2) in a neighborhood of zero

are in one-to-one correspondence with the zeros of ~ in a neighbor-

hood of zero. Let us make the transformation of variables

y
~~ b:y(t) 

• y(t,b ,A )

in Eq. (2). Since y(t,b,0) • b , ~y(t,0,fl)/~b • 1, and y(t,b ,A)

sati sfies (4), (5), we have

(6) 1 • (~y(t,b,A)/ab~~
1
~ (b,A).

For (b,A) in a sufficiently small neighborhood of zero ,
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(ay(t,b ,A)/ab)1 
‘ 0. This immediately shows that the sta-

bil i ty properties of any I-periodic solution of (6) (which

coinc ides wi th the zeros of 
~~

) is the same as the stability

properties of the corresponding solution of a - G(a,A). This

proves the theorem for Eq. (2).

To prove the theorem for Eq. (1), we proceed as in (2],

first observing that G(a A),G(a,A ) have the same set of zeros

in a neighborhood of zero. Thus, we need only show that ~,G
V have the same sign between zeros. Suppose this is not the case.

By a small perturbation in the original Eq. (1), we can suppose

the zeros of both functions are simple. Now replace f in

Eq. (1) by f • c , obtain the new bifurcation G(a,X ,c) —

C(a ,A ) • c for (1), obta in the new bifurcation function

~(a ,A ,c) — ~(a ,~ ) • 6(a,A )t • O()c1 2) as • 0, 6(a,A ) > 0,

for the corresponding equation on the center man ifold. Now

suppose (a0,X0) is a simple zero of G(a ,X), ~(a,A) with

(aG/~a)(~~ /~a) < 0 at (a0,A 0); that is , the functions have

opposite sign in a neighborhood of (a0,A 0). The functions

G(a,A ,c),G(a,A ,c) have d isti nct zeros in a ne ighborhood of

(a0,A 0) for £ small. But this is a contradiction since

they must have the same zeros. This proves the theorem.

Applications of Theorem 1 to general bifurcation theory and

to Hopf bifurcation may be found in (2).

___________ ______________— V_~ •~:. 
~~~~~
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Also, the extension to infinite dimensional systems is dis-

cussed - especially parabolic equations and functional

differential equations.

Let us give another applica tion to the classical problem

of stability in critical cases discussed so thoroughly by

Liapunov ~4J , Lefschetz (3) and , more recently , by Bib ikov (1)

as well as others.

Consider the equation

• f(y,z)

(7)

Bz • g(y,z)

with y € ~~,z E ~~1) .l
, B an (n-I) x (n-i) matrix whose

eigenvalues have negati ve real parts, f,g are functions

f vanishing together with their first derivatives at (0,0).

The method of Liapunov-Schmidt applied to this equation

yields the bifurcation function

(8) G(a) • f(a,$(a))

where • is the unique solution of the equation

(9) B~ • g(a ,$) • 0

in a neighborhood ol (1 $) • (0,0).
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As immediate consequences of Theorem 1, we have

Corollary 1. If there is an integer q > 2 and B # 0 such

that

6(a) • Ba~ • ~~(~~~~~ q 4 ’
) as (a( • 0

then the solution x • (y,z) of (7) is asymptotically stable

If and only if 8 < 0 , q odd . Otherwise , it is unstable.

Th is is the classical result of Liapunov . The function

6(a) can be C~ and there may never ex ist a 8,q as in

Corollary 1. Theorem 1 actually implies a more general property.

Corollary 2. The solution (y,z) - (0,0) of (7) is asymptotical-

~
y stable if and only if there is an c > 0 such that G(a)a < 0

for 0 C J a J < c. The solut ion (y,z) — (0,0) is unstable if

and on ly i f there is an c > 0 such that C(a)a > 0 for either

0 < a < c or -t  C a < 0 .  If there is an c > 0 such that

6(a) • 0 for 0 ~~ < c , then the solution (y,z) • (0,0) of

(7)  is stable and there is a first integral in a neighborhood

of (0,0).

Proof: Everything is obvious from Theorem I except the existence

of the first integral. Suppose G(a) - 0 for a~ ~ and let

— ~~~~~~~~~~~~~~~~~~~~~ V - ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - --- —‘-V ~~~~~ - -~
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z - h ( y )  be the parametric representation of a center manifold

N at (0,0): N • ( ( y , z ) :  z - h(y)}. We know that f(y,h(y)) — 0

for ~~ 
< c. Also , each equ i l ibrium point (y 0, h ( y 0 ) )  of (7)

1y 0 1 ( t , has an (n-l)-diaensional stable manifold S(y0) which

is in y0. The curve N and these stable manifolds can be
V 

used as a coordin ate system in a neighborhood of (0,0) to obtain

a ck mapp ing II: (y,z) (u,v), where ~i - 0, ~‘ 
By • g(u,v).

This latter equation has a first integral V(u v) • u so that the

ori g inal equation has a first integral. This proves the result.

~orol1ary 3. If there is scalar function H (y,z,w), conti nuous

for (y,z,w) € F ~ x such th a t I4(y,z,O) • 0 and

f(y,z) • I I ( y , z ,Bz • g(y,z))

then  the :ero solution of (1) is stable and there is a first

integral. 
V

Proof: The hypotheses imply 6 ( y )  • f(y,6(y)) - 0 for y in

a neighborhood of zero and so Corollary 2 applies.

in the case of analytic systems , Biblkov (lJ refers to the

situation in Corollary I as the ~~~~~~~~ case. For f,g

analytic , the functi on 6(a) is analytic and therefore either

the algebraic case holds or 6(a) 0, which is called the

L_ 
_ _ _
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transcendental case. Corollary 2 says there is a first integral

in the analytic case - another classical result of Liapunov

(see Bibikov (1)). Corollary 3 was also stated by Liapunov

for analytic systems . Thus , we see that the basic results of

Liapunov can be generalized to ck~vector fields and , in

addition , ever ything is based only on the bifurcation function .

This latter remark is the essential improvement in the state-

ment of the results of Liapunov . Some aspects of the proofs

however are similar. Liapunov used his general transformation

V theory to put the equation in a form where it is easy to dis-

cover the center man i fold and the flow on the center manifc d.

We use the abstract center manifold theory and properties of

the stable manifold. In addition , a small amount of perturbation

theory is used in an abstract way to prove the bifurcation

function determines the stability properties of the solutions.

It is instructive for the reader to check the original

examples g iven by Liapunov (4] to see how only the bifurcation

function was used to determine stability.

We remark that the same results as above have extensions to

certain evolut ionary equation s in infinite dimensions; for

example , parabolic systems and functional differential equations.

Finally, we have emphasized stability of the solution

(y,z) • 0 of ( 7 ) .  If the autonomous system depends on a para-

meter (which often occurs in applications), Theorem 1 May be

applied d irectly to obtain stability results even at the bifurca- 
V

V tion curves. 
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